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Abstract

In this paper the Dirac operator on the Klein model for the hyperbolic unit ball is considered and
a Cauchy-type integral transform is defined, by means of a Cauchy kernel with singularity on the
nullcone.
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1. Introduction

In recent papers the authors have developed a function theory for the Dirac operator on
the hyperbolic unit ball—realized as the manifold of rays inside the future £6hia the
flat Minkowski space—tim&" (se€[9,10])—within the framework of Clifford analysis, a
direct and elegant generalization to higher dimension of the theory of holomorphic functions
in the complex plane. Whereas most of the classical literature concerns the Dirac operator
on the flat Euclidean space (9d¢7,13), a natural generalization consists in studying the
Dirac operator on general manifolds within the framework of Clifford analysis[&&8.
For the particular choice of a positively curved Riemannian manifold we refer to the work
of Liu, Ryan, Van Lancker and Sommen ($&&,18,20), whereas in this paper we consider
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a model for the negatively curved Riemannian space. The nature of our mpdgkistive
hereby inspired by Gel'fand and collaborators (EEH), whence all relevant objects are

to be defined on the manifold of rays. In particular, the fundamental solution for the Dirac
operator on the hyperbolic unit ball was defined on the manifold of rays by considering
a homogenous Clifford line bundle and by defining functions on the hyperbolic unit ball
as sections of this bundle (s§&4,8]). This means that functions on the hyperbolic unit
ball arehomogeneoum space—time coordinateg, (X) and that the Dirac operator on the
hyperbolic unit ball is defined as the Dirac operator on the flat Minkowski spaceRittie
acting on homogeneous functions.

The fundamental solution for the hyperbolic Dirac equation, as constructed ifoRef.
is a-homogeneous in space—time coordinate®€ing a complex number) and becomes
singular on the positive time-axis. In order to develop a function theory on the hyperbolic
unit ball, using integral formulae such as Stokes’ and Cauchy’s theorem, these singularities
were to be removed from the time-axis to an arbitrary ray inside the future cone in such
a way that the transformations involved commute with the invariance group of the Dirac
operator, which is the group Spin¢t). This means that we have useguare boost to
remove the singularities to an arbitrary ray inside.

However, the positive time-axis cannot be boosted to a ray belonging to the upper part of
the nullcone, as this would (relativistically speaking) require an infinite amount of energy.
Nevertheless, in this paper we solve the equation for the fundamental solution of the Dirac
operator on the hyperbolic unit ball having a singularity on the nullcone, by introducing
manu militarea delta functioron the nullcone.

This will be done by means of Clifford analysis techniques, for which we refer to
Section 2and Riesz’ distributions, introduced®ection 3The so-called photogenic funda-
mental solution will be constructed Bection 4and inSection 5t will be used to define the
photogenic Cauchy transform. 8ection Gts boundary values will be determined, yielding
results for the spade, (S™ 1) of square integrable functions on the unit spt#tel ¢ R™.

2. Clifford algebras and Clifford analysis

2.1. Clifford analysis on flat Euclidean space

Consider anorthonormal basis, . . ., e, } for R™ endowed with the standard Euclidean
inner product< x, y >= 3, x,y;. The Clifford algebraR,, is then defined as the"2
dimensional real assomauve but non-commutative, algebra generated by., ¢,,} and
the multiplication ruleeje; + eje; = —26;;. An element ofR,, is called a Clifford number
and has the forma =), ), asea, as € R, whereA = {iy, ... i}, i1 <--- <i;risa
subsetofM = {1,...,m} andey = ¢;, - - - ¢;,. FOr Athe empty set we put, = 1 and ifA
hask elementsg,4 is called ak-vector. Denoting the projection afe R,, on itsk-vector
part as §i]x, we geta = Y ;" olalx with [a]x € R¥). Theeven subalgebris the subspace
R(Jr) Zk evenR(k) of R™.

VectorsinR™ are identified with 1-vectors iR,, . Note that the for two vectons y € Ry,
the Clifford productxy = x - y +x A y incorporates both thener productx - y = — <
x, y > and theouter producte A y= ZK/ eij(xiyj — x;jyi).
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The conjugation orRR,, is defined as the map sending— a, with g; = —¢; and
ab = ba. The Clifford groupI"(m) is the subgroup oR,, generated by the non-zero
vectors ofR™; the Pin group Ping) is the subgroup of (m) consisting of products of
unit vectors ofR™ and the Spin group Spim( is the subgroup of Pin{) consisting of
products of arevennumber of unit vectors oR™. For an element € Pin(n) the map
x(s) : R™ — R™ : x — sxs induces an orthogonal transformation &%. In this way
Pin(n) defines a double covering of the orthogonal group:\Dhereas the Spin group
defines a double covering of S).

The Dirac operator ofR” is defined as the vector derivative= }_; e;3;, which is
a first-order Sping)-invariant differential operator factorizing the Laplaciay, on R™:
9% = —A,,. LetQ be an open subset B and letf : > R,, be an element af1(Q). If
af = 0ong, fis calledmonogenion Q. It is clear that monogenic functions fd form a
subclass of the harmonic functionstin In polar coordinates the Dirac operator admits the
following decompositiond = (9, + %F), wherex = row andl” = —x A dis the spherical
Dirac operator or3” L. This operator, which is strongly related to the Atiyah-Singer Dirac
operator on the sphere (see ¢13,20) is a self-adjoint operator on the module(s” 1)
with inner product

(9=  Fed
Sm—l
which is a consequence of Stokes’ theorem on the sphere:

[ e+ srode=o= [ (T - Frens ®

The restriction tos™ ! of a k-homogeneous monogenic polynomigl(x) is called an
inner sphericalmonogenic and satisfieg&P, = —kP;. The restriction tas” 1 of a (1—
k — m)-homogeneous monogenic functigh(x) onRR™ \ {0} is called arouter spherical
monogenic and satisfiegSQ, = (k + m — 1)Qk. The (right Clifford) modules containing
these functions are, respectively, denoted/agk) and M_(k). Inner and outer spherical
monogenics os” 1 are related as follows(w) € M, (k) = wPi(w) € M_(k) and vice
versa. Each functioff € Lo(S™~1) can be decomposed gis= > 72, P(K)[ f]1 + Q(K)[ f1,
where the series convergeslin-sense (see Rdf7]).

The fundamental solution for the Dirac operator is given by the so-called Cauchy kernel
E(x) = ﬁ,satisfyin@E(g) = —§(x) = E(x)d. Since the Dirac operator @1 is invariant
under translations, we immediately have tha{x — y) = —8(x — ).

2.2. Clifford analysis on hyperbolic space

The Clifford algebraR; ,, is generated by an orthonormal baises, . . . , ¢,,} for RL™
and the multiplication rulese; + eje = 0, e;e; + eje; = —25;; ande? = 1. The Dirac op-
erator onRY"™ is given byedr — 9, whered = Z e;jox;. It was already mentioned in
Section 1 that hyperbolic monogenics are deflned -asmogeneous solutlons for the hy-
perbolic Dirac operator. Putting(7, X) = A% f(x), whereA = T andx = T, and writing
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the Dirac operator o1 in terms of ¢., x) itis clear that the hyperbolic function theory is
equivalent with a function theory for the operatér ¢[[E — «]) acting on functionsf(x)
defined on the unit balB,,(1) c R™ (for more details we refer tf8—10]). The following
definition and theorem yield a method to construct hyperbolic monogenics.

Definition 1. For allx € B,,(1) the function Mod{, &, x) is defined as

k—«a

Mod(e, k, 2) = F(lxl*) + o - —xeFa(1x[?),
where
14k—a k—« m
1) ( . ,k+2,r),
1+k—a 24+k—« m
F(t)=F 1+k+—;t).
(1) ( o 2hhoa gy +2,)

Theorem 1. Let Py(w) € M, (k) be an inner spherical monogenic anddet C. Then the
function P, (7, X) given for all(7, X) € FC by

X X
Py x(T, X) = T*Mod (oc, k, ?) Py <§>

is ana-homogeneous solution for the hyperbolic Dirac operator.

Note that the value = —m /2 corresponds to the conformal Dirac operator on the hyper-
bolic unit ball (see e.d17]). The conformal Dirac operator is invariant under the Moebius
group Mobz) = Spin(2 m), and by restricting this group to the subgroup Spin{},
which is the invariance group of the Dirac operator on the hyperbolic unit ball, a richer
function theory is obtained.

3. Distributions defined by divergent integrals

In this section we introduce the distributiom$ on D(R) and the distributiong* on
D(RL™), with 1 an arbitrary complex number. As a general reference to the rest of this
section, we refer t§6,12,14,16]

The functionxi, defined byx* for x > 0 andx = 0 elsewhere, is locally integrable for
Re@) > —1 and hence defines a regular distribution for these values. To déﬁi'rrethe
strip—n — 1 < Re(,) < —n, one can use analytic continuation:

< x)‘ ,Q >= = (d”/dx")xf'", $= s
+ A+DRA+2)---(A+n)
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where the derivatives with respectxanust be interpreted in distributional sense. Hence,
for —n — 1 < Re@) < —n one defines

< x>

A+1DA+2)---(A+n)

< xf‘i_, @ >=(—1) ¢ € D(R).

This means that for alp € D(R), < xi, ¢ > defines a meromorphic function afwith
simple poles at. = —1 —n, n € N. The residue ah = —1 —n is easily found to be
Resft , A =—-1—n) = ﬁ’Tl!XS(’”(x), for all » € N. In order to remove the simple poles

of xf;_ we divide byI"(1 + 1), and so the distributiog{%} is well-defined orD(R) for all

A € Cwith < %11) ¢ > a holomorphic function of. for all ¢ € D(R).

In what follows, we will encounter the Beta-type integfa(, 1) defined for arbitrary
complexx andp aslp(h, u) = fol *~1(1 —r)*~1dr. For Ref) > 0 and Ref) > O this
integral converges in the classical sense to the Beta fun8tfanu), defined in terms of
the Gamma function as

I (1)
B(A, nu) = ———.
(. + p)
For more general andy this relation remains valid, and this can easily be seen as follows:
the Beta integralg(), ) can actually be interpreted as the distributi@ﬁl(l - t)i’l

acting on the constant function 1. The product of the distribut'@ﬁ§ and (1— t)f1

is well-defined for those values for which they, respectively, exist (i.e. fok)Re(0 and
Re() > 0), as they have a "problematic behaviour" for different values (in case 0 and
1), and it has compact support, [] =] — oo, 1] N [0, +oc[. This means that as a func-
tion of (A, 1), this product is defined if2\ {(x, u) € C%: » € —N, u € —N} which is

the complex plane minus a grid. This distribution yields the Beta funcBn w) in

the complex strip{(%, 1) € C2: Re(t) > 0, Re(u) > 0} and for all other possible val-
ues this equality follows by analytic continuation. We may thus conclude that for all
(A, ) € C2\ {(r, n) € C2: » € —N, u € —N} we have:

_r)Iru)
(v p)’

Next we consider the distributiop’, with A € C. The functionp is hereby defined for
space-time vectord(X) € RV by (T2 — | X|)Y/?if (T, X) € FC andp = 0 elsewhere. In
the half-plane Re() > —2, the functiono* defines a regular distribution sinpé is locally
integrable for these values &f Indeed,

Ip(%, 1) ()

<pr o= f / (T2 — | X2/X(T, X)o(T, X) dT dX

defines an analytic function when R§& —2 for ¢ € D(RY™). Analytic continuation
can be used to extend p*, ¢ > to a meromorphic function in the whole complex plane.
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For that purpose we introduce the wave-operaifos 32 — A,, on RY™. The fact that
Op* = A( +m — 1)p*~2, suggests the following definition far* in the strip—2n — 2 <
A< —2n:

. <|:|np)»+2n’(p>
< pt 9 >= .
Pl = 0 0 +4)- -t 20)tmt L) (htmt2n—1)

Hence,p* has polesat = —2 — 2n,n e Nand ath = —1 —m — 2n, n € N. Formeven
all the poles are simple, while fon odd the points-2, —4, ..., 1 — m are simple poles
and the points-m — 1, —m — 3, ... are double poles.

The distributionso* are normalized by introducing suitable factors. Putting

pufmfl

w= N
=121 p(%> r (e

z ®3)

the functionak Z,,, ¢ > becomes an entire function of the complex variabfer each test
functiong € D(R1™). These so-called Riesz-distributiois enjoy remarkable properties,
a few of which will be listed here:

(1) The support o,, is contained in the sdtC.

(2) The distributionsZ,, satisfyZ,, « Z, = Z,,1,.

(3) For allk € N, we have:Z_y = [0¥§(X), with §(X) = 8(T)8(X) the delta-function in
space—time co-ordinates.

(4) Forallp e Candk e N,0FZ,, = Z,,_.

Let us then introduc®’ (R:") as the set of distributiong € D'(R%") with a support
contained inFC. Taking the convolution of two elements @f+(]R1”"), the result is again
in D, (R>™) and henc®’, (R*™) is a convolution algebra. The distributiodls belong to
D, (RY™), and theiruniqueinverses inD', (R*") are the distributiong _,,: Z,, * Z_,, =
8(X), u e C. It follows that the differential equation* f = g, with f andg belonging to
D, (RY™), has unique solutiolf = Zy; * g.

4. The photogenic Cauchy kernel

In this section we solve the so-called photogenic Dirac equation for the hyperbolic
fundamental solution having singularitiea the nullcone. Note that it doasot suffice to
solve the equatiorfr — 3)E(T, X) = 8(Tw — X), withw € §™~1, although the right-hand
side of this equation represents a delta function on the nullcone. In view of the projective
nature of our model for the hyperbolic unit ball, we convolute the right-hand side with the
distributionTjﬁ*’”_l, which expresses the homogeneous character (sg§88.d-his leads
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to the photogenic Dirac equation:
(€dr — ) Eq,o(T. X) = T 15(X — Tw),

where we have chosen to label the fundamental solution with both its degree of homogene-
ity and the arbitrary unit vectap. Note that we expect the distributidfy, (7, X) to be
undefined at the valuese —m — N, because the right-hand side is not defined for these
values. To solve this equation, we use the fact thit ( 9)2 = . Hence, we first consider

the scalar problel®,, (7, X) = Tj_‘”"—la(g — Tw). As the right-hand side is contained

in the setD;L(Rlv”’), we get:d, (T, X) = Z Ti*m_ls(TQ — X). Using the definition

for the Riesz-distributiorz,, this leads to:

1 So Saerfl
®, (T X) = ds,
wal 27 =12 (3 — m/2) /o [T2 — |X]? - 28(T— < X. 0 >)]"~ %2
2 2
where we have pufy = % Recalling the definition of the Beta integral, we get

for even dimensions:m

(o + m) (1% - |§|2)a+((m+1)/2)}

EO&Q(T’ X) = (edr - 9) |:21+a+mn-m1/21"(a +(m+3/2) (T— < X, w >)*tm

Denoting the constant in previous expression(asm), we are lead to:

(TZ _ |§|2)a+((m—l)/2)
(T- < X, @ >)*tm
(TZ _ |K|2)a+((m+l)/2)

(T— <X, o >)a+m+1'

Eoo(T, X) = (200 + m + L)c(or, m)(eT + X)

— (@ + m)c(a, m)(e + )

This expression foE, (7, X) is however valid foboth even and odan. Although the
Gamma function in the denominator of the expressioncfat m) seems to remove the
poles ate € —m — N (coming from the Gamma function in the nominator) in case of an
odd dimension, therare poles at these values farfor botheven and odd dimensioms

To illustrate this, we consider the residue §oe= —m. In that case, we have:

RedT¢ ™ 1§(Tw — X), @ = —m} = §(T)8(Tw — X) = 8(T)8(X).

This means that R¢Z, * T~ 1§(Tw — X), @ = —m} = Z,. On the other hand, we also
have by definition:

Req®q (T, X), 0 = —m} = aﬂ)nlm(a +m)®a,(T. X) = Z2.
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Thus, although the simplification

I'(a+m) _ 1y g m+3
Fatmigz) @tm-b (+ 2 )

seems to remove the polecat= —m, it only makes it less obvious to see that there actually

is a pole at this value. Because we now have two distributions which are equal in a strip
of the complex plane and which have poles at the same values foey are equal in the
whole complex plane by analytic continuation.

5. The photogenic Cauchy transform

Now that we have found a photogenic Cauchy kernel we define a photogenic Cauchy
transform. To do so, we will use the equivalence between the function theory for the Dirac
operator on the hyperbolic unit ball and the function theory for the operatere(E — «])
onB,,(1). Interms of the geometrical model, this means that we project the photogenic Dirac
equation onto the hyperplaié <~ T = 1 ¢ R, Reintroducing X, x) as coordinates in
the FC, we get immediately thab(+ ¢[E — «]) E,(x, @) = —8(x — w). The fundamental
solution E,(x, w) is given by
(1- r2)05+((m—1)/2)

(1- <x, @ >)**"
1- r2)a+((m+1)/2)
(I~ < x, @ >)om+l’
where we have put = r§. We then define the photogenic Cauchy transform of a function
f(w)ons™~1 forallx € B(1), as

Eo(x, @) = (20 + m + 1)e(a, m)(€ + x)

— (@ + m)c(a, m)(e + )

AW =1 [ Bl o)

where the additional factap plays the role of unit normal vector as¥"~1. The result is

a functionC%[ f](x), defined onB(1), which is a solution for the operata? ¢ ¢(E — «)).

In view of the projective nature of our model for the hyperbolic unit ball, this means that
CE[fNT, X) = T*C¥[ f] (%) is a hyperbolic monogenic function for alf;(X) € FC.

Because functiong € L»(S™ 1) can be decomposed in a series of inner and outer spherical
monogenics, we now calculate two things:

(1) for arbitrary Pr(w) € M (k) we determin€ %[ Pi](x);
(2) for arbitraryQ(w) € M_(k) we determin€€ %[ Q](x).

We will hereby make use of two lemmata. The first one is a refinement of the classical
Hecke—Funk theorem (see €.45]), and the latter yields a formula for an integral that will
often occur in what follows.
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Lemma 1. see[19]
Let P.(w) € M (k) and denote the Legendre polynomial of degree k in m dimensions by

Pr.m(1). Puttingx = r§, we get:

f< x, 0 >)Pu(w) do = Ay ( [ 11 Ft) P (D) — £2)m=302 dt) Pi(§).

sm—1

s f(< x, @ >)oPi(w) do

1
=Am(/lﬂnﬂmhMﬂu—FW“@”w>gﬂ9.

Lemma 2. Let F(a, b; c;t) be Gauss’ hypergeometric series andrdet 1. We then have
the following identity

L P ()L — 2302
/;1 (1 —rr)* dr
_ AW20NI(n =1)/2) 4, (k+d Ltk+r  om o,

where(a)y = a(a + 1) - - (a + k — 1) is the Pochammer symbol, wift)g = 1.

Proof. This lemma can be proved by induction on the parametBork = 0 andr < 1:

(1—2)m=3)2 . (—)\> 21/1 2~ (1/2 -
= 7 dr= r 2=/ — 2)m=3)/2¢;2,
[ e > ()0 [, e ePa-

which by means of the definition of the Beta function and properties of the Gamma function,
reduces to

(m—3) _
/ (1(1t2) 32 _fF((m 1)/2)F<§ 1+)~.m;r2>.

dl = 3 v A
iy T 2) 2’72 2
Fork = 1 we get, withPy ,,(¢) = £:

12)(m=3)/2

s

1 t(l _ t2)(m—3)/2d 9, 1 (1 _
/,1 (1—ro)* =01 )

which, by means of the fact th% F(a, b;c;x) = %F(l +a, 14 b;1+ c; x), reduces to

L@ —)m=32 - _ar((m — 1)/2) 1+ A ALoom o,
/,1 Ay Y=V ) rF( 2 ’1+§’1+E’r)'
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The rest of the proof makes use of the recurrence formula for the Legendre polynomials
(see e.g[15]):

f " PO IR, 2k m—2 b, / b PO = A I2
1 a-r)* T k+m—-2x1-1J),4 (1 —r)-1

« k /1 Pioim()(L = A2

k+m—2]_4 (1—re)1 :

Using elementary properties of the hypergeometric series and the induction hypothesis,
this can be simplified and yields

/231 T ((m — 1)/2 1+k+A k+ A
m (X146 ((m )/ )r1+kF Tkt J1+ + ;1+k+ﬁ;"2 .
25K (/2104 T (/2) 2 2 2

This proves the Lemma.

5.1. The photogenic Cauchy transform of inner spherical monogenics

Consider an arbitrary elemenRt(w) € M (k). By definition, we have:

CHPIW =1 [ Fuls oR0)do

The photogenic Cauchy transform has a bivector compa?f§fiit,]» and a scalar compo-
nentC%[ Pr]o. Introducing the short-hand notati@(k, A, r) for

dr,

v [ P — A2
P(k,k,r)_/_l )

we get:

(2o +m + 1)1 — P2t =D/APA 4 k, o + m; )

o P — :
F[Pc]2 = c(a, m) |:—(Oé +m)(1— r2)a+((m+1)/2)P(1+k’ a+m+1;r)

i| €& Pr(£),

a4+ m + 1)(1 — r2)Hn=2/2rp(1 + k, o + m; 7)

CF[Pk]O = —C(Oh m) |: —(O{ + m)(l _ Vz)a+((m+l)/2)P(k, a4+m4+ 1,’.)

] Py ().

With the aid ofLemma 2 this reduces to

7Y (@ +m + k + 1) ((m — 1)/2)
20+ k + (m/2) (e + m)

Ci[Pi)2 = c(a, m)

x (l _ r2)a+((m71)/2)ezpk(£)
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1 k k
(2a+m+1)F< +a;m+ ,1+0l+’;“r ;1+k+%;r2>

X | —(a+m+k+1)A-rAF
a+m+k l+a+m+k
x 1+ 5 1 >

YA (@ +m + k+ 1) ((m — 1)/2)
2Tk + (m/2) (o +m)

20+m+1, (l+a+m+k 1+a+m+k_1+k+m_2
=T
2k +m 2 ’ 2 ' 2’

;1+k+%;r2>

(1 _ r2)a+((m—1)/2) Pk@

CrlPdo = —c(o, m)

X

l+a+m+k a+m+k. m )
' 2

—(1—r2)F< 5 L1+ 5 k4 =1

Eventually making use of the definition of the hypergeometric series to simplify the terms
between square brackets and using Kummer’s relation, we find:

FLP(x) = CE[Pilo + CE[Pil2

YA« +m + k 4+ 1) ((m — 1)/2)

X+ ) +my  Medek AW

= c(a, m
with Mod(q, k, x) given by Definition 1.

5.2. The photogenic Cauchy transform of outer spherical monogenics

Next, we consider an arbitrary outer spherical monogéhi@) € M_(k). Note that we
restrict ourselves t@; () = w Pr(w) such thatP,(w) € M (k) takes its values in the even
subalgebra, whence’f(w), €] = 0. We have by definition:

00w =+ [ Elu 0B do

A’n Sm—

This time the photogenic Cauchy transform consists, up to the®g(&), of a partC%[ O]e
in e and a parCy[Q«]¢ in &, respectively, given by (hereby making usd.eimma J:

—Qa+m + 1) — r2)H O =D2P(k, o + m; r)

FlOkle = c(a, m) |: :| €Pr(£),

(o + m)(L — 22Dk o 4+ m + 1;7)
(2 +m + 1)(1 = r2)*H=D2pP(k, o + m; r)
CrlOkle = —c(a, m)
- —(a +m)(A — 2 H O DAPA 4 &k, a4+ m + 1;7)

X §Pk(§)
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With the aid ofLemma 2 this reduces to

o B 7Y (a 4+ m + k)L ((m — 1)/2)
CrlPde = el m)— e e 2 P 7 )

k1 k
—(2a+m+1)F<a+’;+ , +a;m+ ;k+"—21;r2)

X | +(a@+m+k)(A—r?)F

(1 _ r2)a+((m—l)/2)€Pk @)

5 1+a+m+k 1+oz+m+k_k+m. 2

2 2 A
) 72 (o +m + k + 1) ((m — 1)/2)
CH[P)e = —c(a, m)

2% (k + (m/2)) (o + m)
> (1 _ rZ)aJr((mfl)/Z)sz(l)

20+m+1 <a+m+k l+a+m+k m 2)
vk+ —=r

a+m+k 2 2 )
| o pyetmitktl
2k +m
k 1 k
><(1+O‘+'ZJr L1+ +a;m+ ;1+k+%;r2>

Eventually making use of the definition of the hypergeometric series to simplify the terms
between square brackets we get:
FOK(x) = CF[Qkle + CE[Qkle

B 7Y (a4 m + k) ((m — 1)/2)
= —(14a—k)c(o, m) 2Tk + (m/2) (e £ m)

x Mod(w, &, x) Pr(x)e.

6. Photogenic boundary values

Now that we have found the photogenic Cauchy transforms of inner and outer spherical
monogenic functions aR™, we will determine their boundary values. By that, we mean the
following: as bothC%[ P¢](x) andC%[ Q«](x) are solutions to the operatdd { ¢[E — «])
defined in the unit balB,,(1) ¢ R™, one can wonder whether the following limits exist:

$P 1) = lim [HL—ACELPACE)).

#1011 © = m [H(L = NCHO(E).
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In order to calculate these limits, we will make use of the following property of the
hypergeometric function: for Ret- a — b) > 0 andc ¢ —N, we have

I'(lc—a—b)I(c) @
I'(lc—a)(c—b)

Recalling the definitions of the function Mad(k, x) and the constant(«, m), one can
easily verify that for Ref) + ’”T_l >0

I'((m—1)/2)(@+m+k){(e+m+k—1)+ (k — a)ée} Pr(§)

lim F(a, b;c;t) =
t—1

AP O =" w02 @t D2+ -12)
©)
" _ I((m—1)/2) A+ a—k){(a—k) = (@+m+ k- 1)Ee} Or(8)
CHOIT O = 502 a1+ D2+ (o —1)/2)
©)

Both formulae can be represented by means of the spherical angular opleratnf’"‘l
as follows: -

r'(m —1)/2){l@+m—1—Tg) — §e(It + &)}« + m — It) P(§)

AP0 =5 om0 @+ (n + D/2)e + (n — 1/2)
o _ I(m—1)2) (e +m—1—1T%) — &e(lz + a)l(a +m — I) Ox(§)
Ao 1O =502 @ (n + D/2)e+ (0n = D/2)

This shows that for Re{) + ’”T_l > 0 the boundary value&;[ 7] 1 (§) andCz[Ok] 1 (8)
can be found by letting the polynomial operator

r'(m—1)y2){l@+m—1-1TI%) — (It + a)}(a +m — IF)
8rr(m=1/2) (e + ((m + 1)/2)) (e + ((m — 1)/2))

'Pa(rg) =

in Iz act, respectively, on the spherical monogerfig§) and Qy(&). These formulae can

be reinterpreted, in such a way that they can be recovered as the action of a distribution on
the spherical monogenics. Two different approaches can be followed. The first one uses the
above facts:

HALT @ = [ 0 - 0Pl e

CHONT O = [ 3 - P10

With the aid of(1), this becomes:

AT O = [ Pl — )P de.

1001 O = [ PATE- Do) de
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If we now define the action of a distributidd(w) on a test functiorp(w) by

< D@ p(e) == [ Dlwop(e)de, )
we get for all complexx such that Rex) + '"7*1 > 0:

CElP 1 (§) =< @Pu(lw)d(§ — @), Pr(w) >,

CrlOi] 1 (§) =< @Pa(lw)(E — ). Qi(@) > .

On the other hand, we can also use the photogenic Cauchy kernel and ini&grreb),
with x = r§ as a distribution ir. When acting on a test functiop(§), the action then
becomes (using the definition in express{a)):

< Bl 0).0©) == [ Eult 0e0(©)

If we let this distribution act uporP(§) and Qx(§), respectively, we get (hereby using
similar calculations as iBection J:

< Eo(r§, 0), Pc(§) >
((k — a)/2) 7D+ m + k + 1) ((m — 1)/2)
k+(m/2) 25T (o +m) T'(k + (m/2))

1+k—« k—a m
1+k . .2
F 1 14k + —;
X1 we ( 5 + > + +2r>

72D+ m + k) ((m — 1)/2)
21 (@ 4+ m)M(L+ k + (m/2)

1+k— k—
xrkF< +2 a,1+ 2“;1+k+%;r2>Pk@)-

= c¢(a, m)

X Pr(w) + c(o, m)( — k)(« — k+ 1)

For complexa such that Rex) + % > 0, we thus get in the limit Iiin hereby making
use of(4):

r((m —1)/2) (@ — k){(@ — k — 1) — we(a + m + k)} Pr(w)
8r((m—1)/2) (o + ((m + 1)/2)) (@ + ((m — 1)/2))

Completely analogously, we find fet E,(r§, »), Q«(§) >:
< Ea(rg» Q)’ Qk(g) >

72 (@ +m 4 k) ['((m — 1)/2)

= —clam)(+a -k —FF (o + m) Tk + (m/2))

k— 1+k—
xrkeF( 20{,%;/(4‘%;72) Py(w) + c(a, m)
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7Y (o +m + k) ((m — 1)/2)
X R (a+ m) (L + k + (m/2))

k—a 14k—
xer;F< ¢ u;k—f-ﬂ;l’z) Pr(w),

2’ 2 2

which for Ref) + % > 0in the limit lim reduces to

r—1

I'((m—1)/2)(@+m+k—1){(a+m + k) — we(1 + a — k)} Qr(w)
87 (m-1)/2) (@ + ((m + 1)/2)) (@ + ((m — 1)/2))

Comparing the expressions farEy (1§, o), Px(§) > and< Eq(r§, ®), Qk(§) > inthe limit
lim,_, 1 with the expression&) and (6)for the boundary values of the photogenic Cauchy
transform, we notice that:

lim < Ea(r§, @), Pe(§) >=C;* " [Pi] 1 (@),
lim < Ea(r§, ), 0k(§) >=Cx* " 0] 1 (@).
Putting8 = —a — m, we then make the following conclusion:
lim < Eq(r§. ). Pu(§) >= CRIP 1 (@),
lim < Eq(r%. ©). Qu(®) >= CF[Qd] 1 (@)

Looking at the formulae fwﬁ[Pk] 4 (w)and Iin} < Eo(r§, o), Px(§) >, itisimmediately

clear that these are identical except for the fact that the arguments of the photogenic kernel
are switched, and that < 8.

This phenomenon was already encountered in previous papers (sge:ghe fun-
damental solution for the hyperbolic Dirac equation is both monogenic w.r.t. the Dirac
operator in the variablef] X) acting from the left and the Dirac operator in the variable
(S, Y) acting from the right, provided that therevishomogeneity inT, X) and at the same
time 8-homogeneity in §, Y).
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