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The photogenic Cauchy transform
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Abstract

In this paper the Dirac operator on the Klein model for the hyperbolic unit ball is considered and
a Cauchy-type integral transform is defined, by means of a Cauchy kernel with singularity on the
nullcone.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent papers the authors have developed a function theory for the Dirac operator on
the hyperbolic unit ball—realized as the manifold of rays inside the future coneFC in the
flat Minkowski space–timeR1,m (see[9,10])—within the framework of Clifford analysis, a
direct and elegant generalization to higher dimension of the theory of holomorphic functions
in the complex plane. Whereas most of the classical literature concerns the Dirac operator
on the flat Euclidean space (see[1,7,13]), a natural generalization consists in studying the
Dirac operator on general manifolds within the framework of Clifford analysis (see[2,5]).
For the particular choice of a positively curved Riemannian manifold we refer to the work
of Liu, Ryan, Van Lancker and Sommen (see[17,18,20]), whereas in this paper we consider
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a model for the negatively curved Riemannian space. The nature of our model isprojective,
hereby inspired by Gel’fand and collaborators (see[11]), whence all relevant objects are
to be defined on the manifold of rays. In particular, the fundamental solution for the Dirac
operator on the hyperbolic unit ball was defined on the manifold of rays by considering
a homogenous Clifford line bundle and by defining functions on the hyperbolic unit ball
as sections of this bundle (see[3,4,8]). This means that functions on the hyperbolic unit
ball arehomogeneousin space–time coordinates (T,X) and that the Dirac operator on the
hyperbolic unit ball is defined as the Dirac operator on the flat Minkowski space–timeR

1,m

acting on homogeneous functions.
The fundamental solution for the hyperbolic Dirac equation, as constructed in Ref.[9],

is α-homogeneous in space–time coordinates (α being a complex number) and becomes
singular on the positive time-axis. In order to develop a function theory on the hyperbolic
unit ball, using integral formulae such as Stokes’ and Cauchy’s theorem, these singularities
were to be removed from the time-axis to an arbitrary ray inside the future cone in such
a way that the transformations involved commute with the invariance group of the Dirac
operator, which is the group Spin(1,m). This means that we have used apure boost to
remove the singularities to an arbitrary ray insideFC.

However, the positive time-axis cannot be boosted to a ray belonging to the upper part of
the nullcone, as this would (relativistically speaking) require an infinite amount of energy.
Nevertheless, in this paper we solve the equation for the fundamental solution of the Dirac
operator on the hyperbolic unit ball having a singularity on the nullcone, by introducing
manu militarea delta functionon the nullcone.

This will be done by means of Clifford analysis techniques, for which we refer to
Section 2, and Riesz’ distributions, introduced inSection 3. The so-called photogenic funda-
mental solution will be constructed inSection 4and inSection 5it will be used to define the
photogenic Cauchy transform. InSection 6its boundary values will be determined, yielding
results for the spaceL2(Sm−1) of square integrable functions on the unit sphereSm−1 ⊂ R

m.

2. Clifford algebras and Clifford analysis

2.1. Clifford analysis on flat Euclidean space

Consider an orthonormal basis{e1, . . . , em} for R
m endowed with the standard Euclidean

inner product< x, y >= ∑
j xjyj. The Clifford algebraRm is then defined as the 2m-

dimensional real associative, but non-commutative, algebra generated by{e1, . . . , em} and
the multiplication rule:ejej + ejei = −2δij. An element ofRm is called a Clifford number
and has the forma = ∑

A⊂M aAeA, aA ∈ R, whereA = {i1, . . . , ik}, i1 < · · · < ik is a
subset ofM = {1, . . . , m} andeA = ei1 · · · eik . ForA the empty set we puteφ = 1 and ifA
hask elements,eA is called ak-vector. Denoting the projection ofa ∈ Rm on itsk-vector
part as [a]k, we geta = ∑m

k=0[a]k with [a]k ∈ R
(k)
m . Theeven subalgebrais the subspace

R
(+)
m = ∑

k evenR
(k)
m of R

m.
Vectors inRm are identified with 1-vectors inRm. Note that the for two vectorsx, y ∈ Rm,

the Clifford productxy = x · y + x ∧ y incorporates both theinner productx · y = − <

x, y > and theouter productx ∧ y = ∑
i<j eij(xiyj − xjyi).
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The conjugation onRm is defined as the map sendinga �→ ā, with ei = −ei and
ab = ba. The Clifford groupΓ (m) is the subgroup ofRm generated by the non-zero
vectors ofRm; the Pin group Pin(m) is the subgroup ofΓ (m) consisting of products of
unit vectors ofRm and the Spin group Spin(m) is the subgroup of Pin(m) consisting of
products of anevennumber of unit vectors ofRm. For an elements ∈ Pin(m) the map
χ(s) : R

m �→ R
m : x �→ sxs̄ induces an orthogonal transformation onR

m. In this way
Pin(m) defines a double covering of the orthogonal group O(m) whereas the Spin group
defines a double covering of SO(m).

The Dirac operator onRm is defined as the vector derivative∂ = ∑
j ej∂j, which is

a first-order Spin(m)-invariant differential operator factorizing the Laplacian�m on R
m:

∂2 = −�m. Let� be an open subset ofR
m and letf : � �→ Rm be an element ofC1(�). If

∂f = 0 on�, f is calledmonogenicon�. It is clear that monogenic functions in� form a
subclass of the harmonic functions in�. In polar coordinates the Dirac operator admits the
following decomposition:∂ = ω(∂r + 1

r
Γ ), wherex = rω andΓ = −x ∧ ∂ is the spherical

Dirac operator onSm−1. This operator, which is strongly related to the Atiyah-Singer Dirac
operator on the sphere (see e.g.[17,20]) is a self-adjoint operator on the moduleL2(Sm−1)
with inner product

(f, g) =
∫
Sm−1

f̄ g dξ,

which is a consequence of Stokes’ theorem on the sphere:∫
Sm−1

[(fΓ )g+ f (Γg)] dξ = 0 =
∫
Sm−1

[(Γf )g− f̄ (Γg)] dξ. (1)

The restriction toSm−1 of a k-homogeneous monogenic polynomialPk(x) is called an
inner sphericalmonogenic and satisfiesΓPk = −kPk. The restriction toSm−1 of a (1−
k −m)-homogeneous monogenic functionQk(x) on R

m \ {0} is called anouter spherical
monogenic and satisfiesΓQk = (k +m− 1)Qk. The (right Clifford) modules containing
these functions are, respectively, denoted asM+(k) andM−(k). Inner and outer spherical
monogenics onSm−1 are related as follows:Pk(ω) ∈ M+(k) ⇒ ωPk(ω) ∈ M−(k) and vice
versa. Each functionf ∈ L2(Sm−1) can be decomposed asf = ∑∞

k=0P(k)[f ] +Q(k)[f ],
where the series converges inL2-sense (see Ref.[7]).

The fundamental solution for the Dirac operator is given by the so-called Cauchy kernel
E(x) = x

|x|m , satisfying∂E(x) = −δ(x) = E(x)∂. Since the Dirac operator onRm is invariant
under translations, we immediately have that∂E(x− y) = −δ(x− y).

2.2. Clifford analysis on hyperbolic space

The Clifford algebraR1,m is generated by an orthonormal basis{ε, e1, . . . , em} for R
1,m

and the multiplication rulesεej + ejε = 0, eiej + ejei = −2δij andε2 = 1. The Dirac op-
erator onR

1,m is given byε∂T − ∂, where∂ = ∑
j ej∂Xj . It was already mentioned in

Section 1 that hyperbolic monogenics are defined asα-homogeneous solutions for the hy-
perbolic Dirac operator. PuttingF (T,X) = λαf (x), whereλ = T andx = X

T
, and writing
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the Dirac operator onR1,m in terms of (λ, x) it is clear that the hyperbolic function theory is
equivalent with a function theory for the operator (∂ + ε[E − α]) acting on functionsf (x)
defined on the unit ballBm(1) ⊂ R

m (for more details we refer to[8–10]). The following
definition and theorem yield a method to construct hyperbolic monogenics.

Definition 1. For allx ∈ Bm(1) the function Mod(α, k, x) is defined as

Mod(α, k, x) = F1(|x|2) + k − α

2k +m
xεF2(|x|2),

where

F1(t) = F

(
1 + k − α

2
,
k − α

2
, k + m

2
; t

)
,

F2(t) = F

(
1 + k − α

2
,

2 + k − α

2
,1 + k + m

2
; t

)
.

Theorem 1. LetPk(ω) ∈ M+(k) be an inner spherical monogenic and letα ∈ C. Then the
functionPα,k(T,X) given for all(T,X) ∈ FC by

Pα,k(T,X) = TαMod

(
α, k,

X

T

)
Pk

(
X

T

)

is anα-homogeneous solution for the hyperbolic Dirac operator.

Note that the valueα = −m/2 corresponds to the conformal Dirac operator on the hyper-
bolic unit ball (see e.g.[17]). The conformal Dirac operator is invariant under the Moebius
group Mob(m) ∼= Spin(2,m), and by restricting this group to the subgroup Spin(1,m),
which is the invariance group of the Dirac operator on the hyperbolic unit ball, a richer
function theory is obtained.

3. Distributions defined by divergent integrals

In this section we introduce the distributionsxλ+ onD(R) and the distributionsρλ on
D(R1,m), with λ an arbitrary complex number. As a general reference to the rest of this
section, we refer to[6,12,14,16].

The functionxλ+, defined byxλ for x > 0 andx = 0 elsewhere, is locally integrable for
Re(λ) > −1 and hence defines a regular distribution for these values. To definexλ+ in the
strip−n− 1< Re(λ) < −n, one can use analytic continuation:

< xλ+, ϕ >= < (dn/dxn)xλ+n+ , ϕ >

(λ+ 1)(λ+ 2) · · · (λ+ n)
,
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where the derivatives with respect toxmust be interpreted in distributional sense. Hence,
for −n− 1< Re(λ) < −n one defines

< xλ+, ϕ >= (−1)n
< xλ+n+ , ϕ(n) >

(λ+ 1)(λ+ 2) · · · (λ+ n)
, ϕ ∈ D(R).

This means that for allϕ ∈ D(R), < xλ+, ϕ > defines a meromorphic function ofλ with
simple poles atλ = −1 − n, n ∈ N. The residue atλ = −1 − n is easily found to be
Res(xλ+, λ = −1 − n) = (−1)n

n! δ(n)(x), for all n ∈ N. In order to remove the simple poles

of xλ+ we divide byΓ (1 + λ), and so the distribution
xλ+

Γ (λ+1) is well-defined onD(R) for all

λ ∈ C with <
xλ+

Γ (λ+1), ϕ > a holomorphic function ofλ for all ϕ ∈ D(R).
In what follows, we will encounter the Beta-type integralIB(λ,µ) defined for arbitrary

complexλ andµ asIB(λ,µ) = ∫ 1
0 t

λ−1(1 − t)µ−1 dt. For Re(λ) > 0 and Re(µ) > 0 this
integral converges in the classical sense to the Beta functionB(λ,µ), defined in terms of
the Gamma function as

B(λ,µ) = Γ (λ)Γ (µ)

Γ (λ+ µ)
.

For more generalλ andµ this relation remains valid, and this can easily be seen as follows:
the Beta integralIB(λ,µ) can actually be interpreted as the distributiontλ−1

+ (1 − t)µ−1
+

acting on the constant function 1. The product of the distributionstλ−1
+ and (1− t)µ−1

+
is well-defined for those values for which they, respectively, exist (i.e. for Re(λ) > 0 and
Re(µ) > 0), as they have a "problematic behaviour" for different values (in case 0 and
1), and it has compact support [0,1] =] − ∞,1] ∩ [0,+∞[. This means that as a func-
tion of (λ,µ), this product is defined inC2 \ {(λ,µ) ∈ C

2 : λ ∈ −N, µ ∈ −N} which is
the complex plane minus a grid. This distribution yields the Beta functionB(λ,µ) in
the complex strip{(λ,µ) ∈ C

2 : Re(λ) > 0,Re(µ) > 0} and for all other possible val-
ues this equality follows by analytic continuation. We may thus conclude that for all
(λ,µ) ∈ C

2 \ {(λ,µ) ∈ C
2 : λ ∈ −N, µ ∈ −N} we have:

IB(λ,µ) = Γ (λ)Γ (µ)

Γ (λ+ µ)
. (2)

Next we consider the distributionρλ, with λ ∈ C. The functionρ is hereby defined for
space–time vectors (T,X) ∈ R

1,m by (T 2 − |X|)1/2 if (T,X) ∈ FC andρ = 0 elsewhere. In
the half-plane Re(λ) > −2, the functionρλ defines a regular distribution sinceρλ is locally
integrable for these values ofλ. Indeed,

< ρλ, ϕ >=
∫ ∫

(T 2 − |X|2)λ/2(T,X)ϕ(T,X) dT dX

defines an analytic function when Re(λ) > −2 for ϕ ∈ D(R1,m). Analytic continuation
can be used to extend< ρλ, ϕ > to a meromorphic function in the whole complex plane.
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For that purpose we introduce the wave-operator� = ∂2
T −�m on R

1,m. The fact that
�ρλ = λ(λ+m− 1)ρλ−2, suggests the following definition forρλ in the strip−2n− 2<
λ < −2n:

< ρλ, ϕ >= < �nρλ+2n, ϕ >

(λ+ 2)(λ+ 4) · · · (λ+ 2n)(λ+m+ 1) · · · (λ+m+ 2n− 1)
.

Hence,ρλ has poles atλ = −2 − 2n, n ∈ N and atλ = −1 −m− 2n, n ∈ N. Formeven
all the poles are simple, while form odd the points−2,−4, . . . ,1 −m are simple poles
and the points−m− 1,−m− 3, . . . are double poles.

The distributionsρλ are normalized by introducing suitable factors. Putting

Zµ = ρµ−m−1

π((m−1)/2)2µ−1Γ

(
µ
2

)
Γ
(
µ+1−m

2

) , (3)

the functional< Zµ, ϕ > becomes an entire function of the complex variableµ for each test
functionϕ ∈ D(R1,m). These so-called Riesz-distributionsZµ enjoy remarkable properties,
a few of which will be listed here:

(1) The support ofZµ is contained in the setFC.
(2) The distributionsZµ satisfyZµ ∗ Zν = Zµ+ν.
(3) For allk ∈ N, we have:Z−2k = �kδ(X), with δ(X) = δ(T )δ(X) the delta-function in

space–time co-ordinates.
(4) For allµ ∈ C andk ∈ N, �kZµ = Zµ−2k.

Let us then introduceD
′
+(R1,m) as the set of distributionsf ∈ D′

(R1,m) with a support
contained inFC. Taking the convolution of two elements ofD

′
+(R1,m), the result is again

inD
′
+(R1,m) and henceD

′
+(R1,m) is a convolution algebra. The distributionsZµ belong to

D
′
+(R1,m), and theiruniqueinverses inD

′
+(R1,m) are the distributionsZ−µ: Zµ ∗ Z−µ =

δ(X), µ ∈ C. It follows that the differential equation�kf = g, with f andg belonging to
D

′
+(R1,m), has unique solutionf = Z2k ∗ g.

4. The photogenic Cauchy kernel

In this section we solve the so-called photogenic Dirac equation for the hyperbolic
fundamental solution having singularitieson the nullcone. Note that it doesnot suffice to
solve the equation (ε∂T − ∂)E(T,X) = δ(Tω −X), withω ∈ Sm−1, although the right-hand
side of this equation represents a delta function on the nullcone. In view of the projective
nature of our model for the hyperbolic unit ball, we convolute the right-hand side with the
distributionTα+m−1

+ , which expresses the homogeneous character (see e.g.[8]). This leads
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to the photogenic Dirac equation:

(ε∂T − ∂)Eα,ω(T,X) = Tα+m−1
+ δ(X− Tω),

where we have chosen to label the fundamental solution with both its degree of homogene-
ity and the arbitrary unit vectorω. Note that we expect the distributionEα,ω(T,X) to be
undefined at the valuesα ∈ −m− N, because the right-hand side is not defined for these
values. To solve this equation, we use the fact that (ε∂T − ∂)2 = �. Hence, we first consider
the scalar problem�4α,ω(T,X) = Tα+m−1

+ δ(X− Tω). As the right-hand side is contained
in the setD

′
+(R1,m), we get:4α,ω(T,X) = Z2 ∗ Tα+m−1

+ δ(Tω −X). Using the definition
for the Riesz-distributionZ2, this leads to:

4α,ω(T,X) = 1

2πm−1/2Γ (3 −m/2)

∫ S0

0

Sα+m−1

[T 2 − |X|2 − 2S(T− < X,ω >)]m−1/2
dS,

where we have putS0 = T 2−|X|2
2(T−<X,ω>) . Recalling the definition of the Beta integral, we get

for even dimensions m:

Eα,ω(T,X) = (ε∂T − ∂)

[
Γ (α+m)

21+α+mπm−1/2Γ (α+ (m+ 3/2)

(T 2 − |X|2)α+((m+1)/2)

(T− < X,ω >)α+m

]
.

Denoting the constant in previous expression asc(α,m), we are lead to:

Eα,ω(T,X) = (2α+m+ 1)c(α,m)(εT +X)
(T 2 − |X|2)α+((m−1)/2)

(T− < X,ω >)α+m

− (α+m)c(α,m)(ε+ ω)
(T 2 − |X|2)α+((m+1)/2)

(T− < X,ω >)α+m+1
.

This expression forEα,ω(T,X) is however valid forbotheven and oddm. Although the
Gamma function in the denominator of the expression forc(α,m) seems to remove the
poles atα ∈ −m− N (coming from the Gamma function in the nominator) in case of an
odd dimension, therearepoles at these values forα for botheven and odd dimensionsm.
To illustrate this, we consider the residue forα = −m. In that case, we have:

Res{Tα+m−1
+ δ(Tω −X), α = −m} = δ(T )δ(Tω −X) = δ(T )δ(X).

This means that Res{Z2 ∗ Tα+m−1
+ δ(Tω −X), α = −m} = Z2. On the other hand, we also

have by definition:

Res{4α,ω(T,X), α = −m} = lim
α→−m(α+m)4α,ω(T,X) = Z2.
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Thus, although the simplification

Γ (α+m)

Γ (α+ (m+ 3/2))
= (α+m− 1) · · ·

(
α+ m+ 3

2

)

seems to remove the pole atα = −m, it only makes it less obvious to see that there actually
is a pole at this value. Because we now have two distributions which are equal in a strip
of the complex plane and which have poles at the same values forα, they are equal in the
whole complex plane by analytic continuation.

5. The photogenic Cauchy transform

Now that we have found a photogenic Cauchy kernel we define a photogenic Cauchy
transform. To do so, we will use the equivalence between the function theory for the Dirac
operator on the hyperbolic unit ball and the function theory for the operator (∂ + ε[E − α])
onBm(1). In terms of the geometrical model, this means that we project the photogenic Dirac
equation onto the hyperplane6 ↔ T = 1 ⊂ R

1,m. Reintroducing (λ, x) as coordinates in
theFC, we get immediately that (∂ + ε[E − α])Eα(x, ω) = −δ(x− ω). The fundamental
solutionEα(x, ω) is given by

Eα(x, ω) = (2α+m+ 1)c(α,m)(ε+ x)
(1 − r2)α+((m−1)/2)

(1− < x,ω >)α+m

− (α+m)c(α,m)(ε+ ω)
(1 − r2)α+((m+1)/2)

(1− < x,ω >)α+m+1
,

where we have putx = rξ. We then define the photogenic Cauchy transform of a function

f (ω) onSm−1, for all x ∈ B(1), as

CαF [f ](x) = 1

Am

∫
Sm−1

Eα(x, ω)ωf (ω) dω,

where the additional factorω plays the role of unit normal vector onSm−1. The result is
a functionCαF [f ](x), defined onB(1), which is a solution for the operator (∂ + ε(E − α)).
In view of the projective nature of our model for the hyperbolic unit ball, this means that

CαF [f ](T,X) = TαCαF [f ]
(
X

T

)
is a hyperbolic monogenic function for all (T,X) ∈ FC.

Because functionsf ∈ L2(Sm−1) can be decomposed in a series of inner and outer spherical
monogenics, we now calculate two things:

(1) for arbitraryPk(ω) ∈ M+(k) we determineCαF [Pk](x);
(2) for arbitraryQk(ω) ∈ M−(k) we determineCαF [Qk](x).

We will hereby make use of two lemmata. The first one is a refinement of the classical
Hecke–Funk theorem (see e.g.[15]), and the latter yields a formula for an integral that will
often occur in what follows.
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Lemma 1. see[19]
LetPk(ω) ∈ M+(k) and denote the Legendre polynomial of degree k in m dimensions by

Pk,m(t). Puttingx = rξ, we get:

∫
Sm−1

f (< x,ω >)Pk(ω) dω = Am

(∫ 1

−1
f (rt)Pk,m(t)(1 − t2)(m−3)/2 dt

)
Pk(ξ),

∫
Sm−1

f (< x,ω >)ωPk(ω) dω

= Am

(∫ 1

−1
f (rt)P1+k,m(t)(1 − t2)(m−3)/2 dt

)
ξPk(ξ).

Lemma 2. LetF (a, b; c; t) be Gauss’ hypergeometric series and letr < 1. We then have
the following identity∫ 1

−1

Pk,m(t)(1 − t2)(m−3)/2

(1 − rt)λ
dt

= π(1/2)(λ)kΓ ((m− 1)/2)

2k(m/2)kΓ (m/2)
rkF

(
k + λ

2
,

1 + k + λ

2
; k + m

2
; r2
)
,

where(a)k = a(a+ 1) · · · (a+ k − 1) is the Pochammer symbol, with(a)0 = 1.

Proof. This lemma can be proved by induction on the parameterk. Fork = 0 andr < 1:

∫ 1

−1

(1 − t2)(m−3)/2

(1 − rt)λ
dt =

∞∑
l=0

(−λ
2l

)
(r)2l

∫ 1

0
(t2)l−(1/2)(1 − t2)(m−3)/2dt2,

which by means of the definition of the Beta function and properties of the Gamma function,
reduces to

∫ 1

−1

(1 − t2)(m−3)/2

(1 − rt)λ
dt = √

π
Γ ((m− 1)/2)

Γ (m/2)
F

(
λ

2
,

1 + λ

2
;
m

2
; r2
)
.

Fork = 1 we get, withP1,m(t) = t:

∫ 1

−1

t(1 − t2)(m−3)/2

(1 − rt)λ
dt = ∂r

λ− 1

∫ 1

−1

(1 − t2)(m−3)/2

(1 − rt)λ−1
dt,

which, by means of the fact thatddxF (a, b; c; x) = ab
c
F (1 + a,1 + b; 1 + c; x), reduces to

∫ 1

−1

t(1 − t2)(m−3)/2

(1 − rt)λ
dt = √

π
λΓ ((m− 1)/2)

mΓ (m/2)
rF

(
1 + λ

2
,1 + λ

2
; 1 + m

2
; r2
)
.
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The rest of the proof makes use of the recurrence formula for the Legendre polynomials
(see e.g.[15]):∫ 1

−1

P1+k,m(t)(1 − t2)(m−3)/2

(1 − rt)λ
dt = 2k +m− 2

k +m− 2

∂r

λ− 1

∫ 1

−1

Pk,m(t)(1 − t2)(m−3)/2

(1 − rt)λ−1
dt

× − k

k +m− 2

∫ 1

−1

Pk−1,m(t)(1 − t2)(m−3)/2

(1 − rt)λ−1
dt.

Using elementary properties of the hypergeometric series and the induction hypothesis,
this can be simplified and yields

π(1/2)(λ)1+kΓ ((m− 1)/2)

21+k(m/2)1+kΓ (m/2)
r1+kF

(
1 + k + λ

2
,1 + k + λ

2
; 1 + k + m

2
; r2
)
.

This proves the Lemma.�

5.1. The photogenic Cauchy transform of inner spherical monogenics

Consider an arbitrary elementPk(ω) ∈ M+(k). By definition, we have:

CαF [Pk](x) = 1

Am

∫
Sm−1

Eα(x, ω)ωPk(ω) dω.

The photogenic Cauchy transform has a bivector componentCαF [Pk]2 and a scalar compo-
nentCαF [Pk]0. Introducing the short-hand notationP(k, λ, r) for

P(k, λ; r) =
∫ 1

−1

Pk,m(t)(1 − t2)(m−3)/2

(1 − rt)λ
dt,

we get:

CαF [Pk]2 = c(α,m)

[
(2α+m+ 1)(1− r2)α+((m−1)/2)P(1 + k, α+m; r)

−(α+m)(1 − r2)α+((m+1)/2)P(1 + k, α+m+ 1;r)

]
εξPk(ξ),

CαF [Pk]0 = −c(α,m)

[
(2α+m+ 1)(1− r2)α+((m−1)/2)rP(1 + k, α+m; r)

−(α+m)(1 − r2)α+((m+1)/2)P(k, α+m+ 1;r)

]
Pk(ξ).

With the aid ofLemma 2, this reduces to

CαF [Pk]2 = c(α,m)
π(1/2)Γ (α+m+ k + 1)Γ ((m− 1)/2)

2k+1Γ (1 + k + (m/2)Γ (α+m)

× (1 − r2)α+((m−1)/2)εxPk(x)
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×




(2α+m+ 1)F

(
1 + α+m+ k

2
,1 + α+m+ k

2
; 1 + k + m

2
; r2

)

−(α+m+ k + 1)(1− r2)F

×
(

1 + α+m+ k

2
,1 + 1 + α+m+ k

2
; 1 + k + m

2
; r2

)



,

CαF [Pk]0 = −c(α,m)
π(1/2)Γ (α+m+ k + 1)Γ ((m− 1)/2)

2kΓ (k + (m/2))Γ (α+m)
(1 − r2)α+((m−1)/2)Pk(x)

×




2α+m+ 1

2k +m
r2F

(
1 + α+m+ k

2
,1 + α+m+ k

2
; 1 + k + m

2
; r2

)

−(1 − r2)F

(
1 + α+m+ k

2
,1 + α+m+ k

2
; k + m

2
; r2

)

 .

Eventually making use of the definition of the hypergeometric series to simplify the terms
between square brackets and using Kummer’s relation, we find:

CαF [Pk](x) = CαF [Pk]0 + CαF [Pk]2

= c(α,m)
π(1/2)Γ (α+m+ k + 1)Γ ((m− 1)/2)

2kΓ (k + (m/2))Γ (α+m)
Mod(α, k, x)Pk(x)

with Mod(α, k, x) given by Definition 1.

5.2. The photogenic Cauchy transform of outer spherical monogenics

Next, we consider an arbitrary outer spherical monogenicQk(ω) ∈ M−(k). Note that we
restrict ourselves toQk(ω) = ωPk(ω) such thatPk(ω) ∈ M+(k) takes its values in the even
subalgebra, whence [Pk(ω), ε] = 0. We have by definition:

CαF [Qk](x) = − 1

Am

∫
Sm−1

Eα(x, ω)Pk(ω) dω.

This time the photogenic Cauchy transform consists, up to the termPk(ξ), of a partCαF [Qk]ε
in ε and a partCαF [Qk]ξ in ξ, respectively, given by (hereby making use ofLemma 1):

CαF [Qk]ε = c(α,m)


−(2α+m+ 1)(1− r2)α+((m−1)/2)P(k, α+m; r)

+(α+m)(1 − r2)α+((m+1)/2)P(k, α+m+ 1;r)


 εPk(ξ),

CαF [Qk]ξ = −c(α,m)


 (2α+m+ 1)(1− r2)α+((m−1)/2)rP(k, α+m; r)

−(α+m)(1 − r2)α+((m+1)/2)P(1 + k, α+m+ 1;r)




× ξPk(ξ).
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With the aid ofLemma 2, this reduces to

CαF [Pk]ε = c(α,m)
π(1/2)Γ (α+m+ k)Γ ((m− 1)/2)

2kΓ (k + (m/2))Γ (α+m)
(1 − r2)α+((m−1)/2)εPk(x)

×




−(2α+m+ 1)F

(
α+m+ k

2
,

1 + α+m+ k

2
; k + m

2
; r2
)

+ (α+m+ k)(1 − r2)F

×
(

1 + α+m+ k

2
,

1 + α+m+ k

2
; k + m

2
; r2
)


 ,

CαF [Pk]ξ = −c(α,m)
π(1/2)Γ (α+m+ k + 1)Γ ((m− 1)/2)

2kΓ (k + (m/2))Γ (α+m)

× (1 − r2)α+((m−1)/2)xPk(x)

×




2α+m+ 1

α+m+ k
F

(
α+m+ k

2
,

1 + α+m+ k

2
; k + m

2
; r2
)

−(1 − r2)
α+m+ k + 1

2k +m
F

×
(

1 + α+m+ k

2
,1 + 1 + α+m+ k

2
; 1 + k + m

2
; r2
)



.

Eventually making use of the definition of the hypergeometric series to simplify the terms
between square brackets we get:

CαF [Qk](x) = CαF [Qk]ε + CαF [Qk]ξ

= −(1 + α− k)c(α,m)
π(1/2)Γ (α+m+ k)Γ ((m− 1)/2)

2kΓ (k + (m/2))Γ (α+m)

× Mod(α, k, x)Pk(x)ε.

6. Photogenic boundary values

Now that we have found the photogenic Cauchy transforms of inner and outer spherical
monogenic functions onRm, we will determine their boundary values. By that, we mean the
following: as bothCαF [Pk](x) andCαF [Qk](x) are solutions to the operator (∂ + ε[E − α])
defined in the unit ballBm(1) ⊂ R

m, one can wonder whether the following limits exist:

CαF [Pk] ↑ (ξ) = lim
r→1−

[H(1 − r)CαF [Pk](rξ)],

CαF [Qk] ↑ (ξ) = lim
r→1−

[H(1 − r)CαF [Qk](rξ)].
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In order to calculate these limits, we will make use of the following property of the
hypergeometric function: for Re(c − a− b) > 0 andc /∈ −N, we have

lim
t→1

F (a, b; c; t) = Γ (c − a− b)Γ (c)

Γ (c − a)Γ (c − b)
. (4)

Recalling the definitions of the function Mod(α, k, x) and the constantc(α,m), one can
easily verify that for Re(α) + m−1

2 > 0

CαF [Pk] ↑ (ξ) = Γ ((m− 1)/2)

8π((m−1)/2)

(α+m+ k){(α+m+ k − 1) + (k − α)ξε}Pk(ξ)
(α+ ((m+ 1)/2))(α+ ((m− 1)/2))

,

(5)

CαF [Qk] ↑ (ξ) = Γ ((m− 1)/2)

8π((m−1)/2)

(1 + α− k){(α− k) − (α+m+ k − 1)ξε}Qk(ξ)

(α+ ((m+ 1)/2))(α+ ((m− 1)/2))
.

(6)

Both formulae can be represented by means of the spherical angular operatorΓξ onSm−1

as follows:

CαF [Pk] ↑ (ξ) = Γ ((m− 1)/2)

8π((m−1)/2)

{(α+m− 1 − Γξ) − ξε(Γξ + α)}(α+m− Γξ)Pk(ξ)

(α+ ((m+ 1)/2))(α+ ((m− 1)/2))
,

CαF [Qk] ↑ (ξ) = Γ ((m− 1)/2)

8π((m−1)/2)

{(α+m− 1 − Γξ) − ξε(Γξ + α)}(α+m− Γξ)Qk(ξ)

(α+ ((m+ 1)/2))(α+ ((m− 1)/2))
.

This shows that for Re(α) + m−1
2 > 0 the boundary valuesCαF [Pk] ↑ (ξ) andCαF [Qk] ↑ (ξ)

can be found by letting the polynomial operator

Pα(Γξ) = Γ ((m− 1)/2)

8π((m−1)/2)

{(α+m− 1 − Γξ) − ξε(Γξ + α)}(α+m− Γξ)

(α+ ((m+ 1)/2))(α+ ((m− 1)/2))

in Γξ act, respectively, on the spherical monogenicsPk(ξ) andQk(ξ). These formulae can
be reinterpreted, in such a way that they can be recovered as the action of a distribution on
the spherical monogenics. Two different approaches can be followed. The first one uses the
above facts:

CαF [Pk] ↑ (ξ) =
∫
Sm−1

δ(ξ − ω)Pα(Γω)Pk(ω) dω,

CαF [Qk] ↑ (ξ) =
∫
Sm−1

δ(ξ − ω)Pα(Γω)Qk(ω) dω.

With the aid of(1), this becomes:

CαF [Pk] ↑ (ξ) =
∫
Sm−1
Pα(Γω)δ(ξ − ω)Pk(ω) dω,

CαF [Qk] ↑ (ξ) =
∫
Sm−1
Pα(Γω)δ(ξ − ω)Qk(ω) dω.



352 D. Eelbode, F. Sommen / Journal of Geometry and Physics 54 (2005) 339–354

If we now define the action of a distributionD(ω) on a test functionϕ(ω) by

< D(ω), ϕ(ω) >=
∫
Sm−1
D(ω)ωϕ(ω) dω, (7)

we get for all complexα such that Re(α) + m−1
2 > 0:

CαF [Pk] ↑ (ξ) =< ωPα(Γω)δ(ξ − ω), Pk(ω) >,

CαF [Qk] ↑ (ξ) =< ωPα(Γω)δ(ξ − ω),Qk(ω) > .

On the other hand, we can also use the photogenic Cauchy kernel and interpretEα(x, ω),
with x = rξ as a distribution inξ. When acting on a test functionϕ(ξ), the action then
becomes (using the definition in expression(7)):

< Eα(rξ, ω), ϕ(ξ) >=
∫
Sm−1

Eα(rξ, ω)ξϕ(ξ) dξ.

If we let this distribution act uponPk(ξ) andQk(ξ), respectively, we get (hereby using
similar calculations as inSection 5):

< Eα(rξ, ω), Pk(ξ) >

= c(α,m)
((k − α)/2)

k + (m/2)

π(1/2)Γ (α+m+ k + 1)Γ ((m− 1)/2)

2kΓ (α+m)Γ (k + (m/2))

× r1+kωε F
(

1 + k − α

2
,1 + k − α

2
; 1 + k + m

2
; r2
)

×Pk(ω) + c(α,m)(α− k)(α− k + 1)
π(1/2)Γ (α+m+ k)Γ ((m− 1)/2)

2k+1Γ (α+m)Γ (1 + k + (m/2)

× rkF

(
1 + k − α

2
,1 + k − α

2
; 1 + k + m

2
; r2
)
Pk(ω).

For complexα such that Re(α) + m−1
2 > 0, we thus get in the limit lim

r→1
, hereby making

use of(4):

Γ ((m− 1)/2)

8π((m−1)/2)

(α− k){(α− k − 1) − ωε(α+m+ k)}Pk(ω)

(α+ ((m+ 1)/2))(α+ ((m− 1)/2))
.

Completely analogously, we find for< Eα(rξ, ω),Qk(ξ) >:

< Eα(rξ, ω),Qk(ξ) >

= −c(α,m)(1 + α− k)
π(1/2)Γ (α+m+ k)Γ ((m− 1)/2)

2kΓ (α+m)Γ (k + (m/2))

× rkεF

(
k − α

2
,

1 + k − α

2
; k + m

2
; r2
)
Pk(ω) + c(α,m)
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× π(1/2)Γ (α+m+ k)Γ ((m− 1)/2)

2k+1Γ (α+m)Γ (1 + k + (m/2))

×rkω;F

(
k − α

2
,

1 + k − α

2
; k + m

2
; r2
)
Pk(ω),

which for Re(α) + m−1
2 > 0 in the limit lim

r→1
reduces to

Γ ((m− 1)/2)

8π((m−1)/2)

(α+m+ k − 1){(α+m+ k) − ωε(1 + α− k)}Qk(ω)

(α+ ((m+ 1)/2))(α+ ((m− 1)/2))
.

Comparing the expressions for< Eα(rξ, ω), Pk(ξ) >and< Eα(rξ, ω),Qk(ξ) > in the limit
limr→1 with the expressions(5) and (6)for the boundary values of the photogenic Cauchy
transform, we notice that:

lim
r→1

< Eα(rξ, ω), Pk(ξ) >= C−α−m
F [Pk] ↑ (ω),

lim
r→1

< Eα(rξ, ω),Qk(ξ) >= C−α−m
F [Qk] ↑ (ω).

Puttingβ = −α−m, we then make the following conclusion:

lim
r→1

< Eα(rξ, ω), Pk(ξ) >= CβF [Pk] ↑ (ω),

lim
r→1

< Eα(rξ, ω),Qk(ξ) >= CβF [Qk] ↑ (ω).

Looking at the formulae forCβF [Pk] ↑ (ω) and lim
r→1

< Eα(rξ, ω), Pk(ξ) >, it is immediately

clear that these are identical except for the fact that the arguments of the photogenic kernel
are switched, and thatα ↔ β.

This phenomenon was already encountered in previous papers (see e.g.[10]): the fun-
damental solution for the hyperbolic Dirac equation is both monogenic w.r.t. the Dirac
operator in the variable (T,X) acting from the left and the Dirac operator in the variable
(S, Y ) acting from the right, provided that there isα-homogeneity in (T,X) and at the same
timeβ-homogeneity in (S, Y ).
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